Machine learning with operational costs

نویسندگان

  • Theja Tulabandhula
  • Cynthia Rudin
چکیده

This work proposes a way to align statistical modeling with decision making. We provide a method that propagates the uncertainty in predictive modeling to the uncertainty in operational cost, where operational cost is the amount spent by the practitioner in solving the problem. The method allows us to explore the range of operational costs associated with the set of reasonable statistical models, so as to provide a useful way for practitioners to understand uncertainty. To do this, the operational cost is cast as a regularization term in a learning algorithm’s objective function, allowing either an optimistic or pessimistic view of possible costs, depending on the regularization parameter. From another perspective, if we have prior knowledge about the operational cost, for instance that it should be low, this knowledge can help to restrict the hypothesis space, and can help with generalization. We provide a theoretical generalization bound for this scenario. We also show that learning with operational costs is related to robust optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Toward Cost-Sensitive Modeling for Intrusion Detection

Intrusion detection systems need to maximize security while minimizing costs. In this paper, we study the problem of building cost-sensitive intrusion detection models. We examine the major cost factors: development costs, operational costs, damage costs incurred due to intrusions, and the costs involved in responding to intrusions. We propose cost-sensitive machine learning techniques to produ...

متن کامل

Toward Cost-Sensitive Modeling for Intrusion Detection

Intrusion detection systems need to maximize security while minimizing costs. In this paper, we study the problem of building cost-sensitive intrusion detection models. We examine the major cost factors: development costs, operational costs, damage costs incurred due to intrusions, and the costs involved in responding to intrusions. We propose cost-sensitive machine learning techniques to produ...

متن کامل

A Novel Interactive Possibilistic Mixed Integer Nonlinear Model for Cellular Manufacturing Problem under Uncertainty

Elaborating an appropriate cellular manufacturing system (CMS) could solve many structural and operational issues. Thereby, considering some significant factors as worker skill, machine hardness, and product quality levels could assist the companies in current competitive environment. This paper proposes a novel interactive possibilistic mixed integer nonlinear approach to minimize the total co...

متن کامل

Debt Collection Industry: Machine Learning Approach

Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013